170 research outputs found

    Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures

    Get PDF
    Ballistic electron emission microscopy (BEEM) and its spectroscopy utilize ballistic transport of hot carriers as a versatile tool to characterize nanometer-scale structural and electronic properties of metallic and semiconducting materials and their interfaces. In this review, recent progress in experimental and theoretical aspects of the BEEM technique are covered. Emphasis is drawn to the development of BEEM in several emerging fields, including spin-sensitive hot-carrier transport through ferromagnetic thin films and multilayers, hot-electron spectroscopy and imaging of organic thin films and molecules, and hot-electron induced electroluminescence in semiconductor heterostructures. A brief discussion on BEEM of cross-sectional semiconductor heterostructures and advanced insulator films is also included

    Manipulation of subsurface carbon nanoparticles in Bi2Sr2CaCu2O8+δ using a scanning tunneling microscope

    Get PDF
    We present evidence that subsurface carbon nanoparticles in Bi2Sr2CaCu2O8+δ can be manipulated with nanometer precision using a scanning tunneling microscope. High-resolution images indicate that most of the carbon particles remain subsurface after transport observable as a local increase in height as the particle pushes up on the surface. Tunneling spectra in the vicinity of these protrusions exhibit semiconducting characteristics with a band gap of approximately 1.8 eV, indicating that the incorporation of carbon locally alters the electronic properties near the surface

    Electronic structure changes of Si(001)-(2x1) from subsurface Mn observed by STM

    Get PDF
    The deposition of Mn atoms onto the Si(001)-(2x1) reconstructed surface has been studied using scanning tunneling microscopy (STM) and first-principles electronic structure calculations. Room-temperature deposition of 0.1 ML (monolayer) of Mn gives rise to a disordered surface structure. After in situ annealing between 300 and 700 °C, most of the Mn is incorporated into three-dimensional manganese silicide islands, and Si dimer rows reappear in the STM images on most of the substrate surface. At the same time, rowlike structures are visible in the atomic-scale STM images. A comparison with calculated STM images provides evidence that Mn atoms are incorporated into the row structures in subsurface interstitial sites, which are the lowest-energy position for Mn on Si(001). The subsurface Mn alters the height and local density of states of the Si dimer atoms, causing them to appear 0.6 Å higher than a neighboring Si dimer with no Mn below. This height difference that allows the detection the subsurface Mn results from a subtle interplay of geometrical and electronic effects

    Seasonally Forced SIR Systems Applied to Respiratory Infectious Diseases, Bifurcations, and Chaos

    Get PDF
    We investigate models to describe respiratory diseases with fast mutating virus pathogens such that after some years the aquired resistance is lost and hosts can be infected with new variants of the pathogen. Such models were initially suggested for respiartory diseases like influenza, showing complex dynamics in reasonable parameter regions when comparing to historic empirical influenza like illness data, e.g., from Ille de France. The seasonal forcing typical for respiratory diseases gives rise to the different rich dynamical scenarios with even small parameter changes. Especially the seasonality of the infection leads for small values already to period doubling bifurcations into chaos, besides additional coexisting attractors. Such models could in the future also play a role in understanding the presently experienced COVID-19 pandemic, under emerging new variants and with only limited vaccine efficacies against newly upcoming variants. From first period doubling bifurcations, we can eventually infer at which close by parameter regions complex dynamics including deterministic chaos can arise.Marie Skłodowska-Curie grant agreement No. 79249

    Quasi-Neutral theory of epidemic outbreaks

    Get PDF
    Some epidemics have been empirically observed to exhibit outbreaks of all possible sizes, i.e., to be scalefree or scale-invariant. Different explanations for this finding have been put forward; among them there is a model for "accidental pathogens" which leads to power-law distributed outbreaks without apparent need of parameter fine tuning. This model has been claimed to be related to self-organized criticality, and its critical properties have been conjectured to be related to directed percolation. Instead, we show that this is a (quasi) neutral model, analogous to those used in Population Genetics and Ecology, with the same critical behavior as the voter-model, i.e. the theory of accidental pathogens is a (quasi)-neutral theory. This analogy allows us to explain all the system phenomenology, including generic scale invariance and the associated scaling exponents, in a parsimonious and simple way.Comment: 13 pages, 6 figures Accepted for publication in PLoS ONE the text have been modified in orden to improve the figure's resolutio

    Surface electrons at plasma walls

    Full text link
    In this chapter we introduce a microscopic modelling of the surplus electrons on the plasma wall which complements the classical description of the plasma sheath. First we introduce a model for the electron surface layer to study the quasistationary electron distribution and the potential at an unbiased plasma wall. Then we calculate sticking coefficients and desorption times for electron trapping in the image states. Finally we study how surplus electrons affect light scattering and how charge signatures offer the possibility of a novel charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse

    Smoking and health-related quality of life in English general population: Implications for economic evaluations

    Get PDF
    Copyright @ 2012 Vogl et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Little is known as to how health-related quality of life (HRQoL) when measured by generic instruments such as EQ-5D differ across smokers, ex-smokers and never-smokers in the general population; whether the overall pattern of this difference remain consistent in each domain of HRQoL; and what implications this variation, if any, would have for economic evaluations of tobacco control interventions. Methods: Using the 2006 round of Health Survey for England data (n = 13,241), this paper aims to examine the impact of smoking status on health-related quality of life in English population. Depending upon the nature of the EQ-5D data (i.e. tariff or domains), linear or logistic regression models were fitted to control for biology, clinical conditions, socio-economic background and lifestyle factors that an individual may have regardless of their smoking status. Age- and gender-specific predicted values according to smoking status are offered as the potential 'utility' values to be used in future economic evaluation models. Results: The observed difference of 0.1100 in EQ-5D scores between never-smokers (0.8839) and heavy-smokers (0.7739) reduced to 0.0516 after adjusting for biological, clinical, lifestyle and socioeconomic conditions. Heavy-smokers, when compared with never-smokers, were significantly more likely to report some/severe problems in all five domains - mobility (67%), self-care (70%), usual activity (42%), pain/discomfort (46%) and anxiety/depression (86%) -. 'Utility' values by age and gender for each category of smoking are provided to be used in the future economic evaluations. Conclusion: Smoking is significantly and negatively associated with health-related quality of life in English general population and the magnitude of this association is determined by the number of cigarettes smoked. The varying degree of this association, captured through instruments such as EQ-5D, may need to be fed into the design of future economic evaluations where the intervention being evaluated affects (e.g. tobacco control) or is affected (e.g. treatment for lung cancer) by individual's (or patients') smoking status

    Are current dynamic water quality models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P

    Get PDF
    Catchment-scale water quality models are becoming increasingly popular tools for exploring the potential effects of land management, land use change and climate change on water quality. However, the dynamic, catchment-scale nutrient models in common usage are complex, with many uncertain parameters requiring calibration, limiting their usability and robustness. A key question is whether this complexity is justified. To explore this, we have developed a parsimonious P model, SimplyP, incorporating a coupled rainfall-runoff model and a biogeochemical model able to simulate streamflow, suspended sediment, particulate and dissolved P dynamics. The model’s complexity is compared in a small rural catchment in northeast Scotland. For three land use classes, less than six SimplyP model parameters must be determined through calibration alone, the rest may be based on measurements; INCA-P has around 40 unmeasurable parameters. Despite simpler process-representation, SimplyP produced a slightly better dissolved P simulation during both calibration and validation, and produced similar long-term projections in response to changes in land management. Results support the hypothesis that INCA-P is overly complex for the study catchment. We hope our findings will help prompt wider model comparison exercises, as well as debate amongst the water quality modelling community as to whether today's models are fit for purpose. Simpler models such as SimplyP have the potential to be useful management and research tools, building blocks for future model development (prototype code is freely available), or benchmarks against which more complex models could be evaluated
    corecore